database - Load the R output eachtime in MySQL DB -


i have loop iterates each row in data frame , generates 5 output files , keep appending on same file records - code working fine.

for (n in 1:nrow(data)) {     #initialize required variables    (some function ---)         #write file output file      df1= data.frame (key,value)     df2= data.frame (key,value)     df3= data.frame (key,value)     df4= data.frame (key,value)     df5= data.frame (key,value)      write.table(df1, file = paste(pradd,"table1.tsv",sep="/"), append = true, quote = false, sep = "\t")     write.table(df2, file = paste(pradd,"table2.tsv",sep="/"), append = true, quote = false, sep = "\t")     write.table(df3, file = paste(pradd,"table3.tsv",sep="/"), append = true, quote = false, sep = "\t")     write.table(df4, file = paste(pradd,"table4.tsv",sep="/"), append = true, quote = false, sep = "\t")     write.table(df5, file = paste(pradd,"table5.tsv",sep="/"), append = true, quote = false, sep = "\t")  } 

however wanted load output - directly r mysql db 5 tables. these 5 files large in size, have use library load faster db table.

i using rodbc connect mysql. can read mysql tables r, estabilishing connection. not sure how load 5 tables each time - loop runs.

update: have tried below code - it's loading - sqlquery slow .my loop processing fast, when try load database slow.

for (i in 1: nrow(data)) { (--some function create dataset 1 dataset 4 --- )  # collect result in dataset1  ,  put them in .txt file , use .txt file load db write.table(dataset1 , file1.txt, append=false, sep = "\t") sqlquery(channel," load data local infile 'file1.txt' table lta_r_db.file1  fields terminated '\t'  lines terminated '\\n';")  # collect result in dataset2  ,  put them in .txt file , use .txt file load db write.table(dataset2 , file2.txt, append=false, sep = "\t") sqlquery(channel," load data local infile 'file2.txt' table lta_r_db.file2  fields terminated '\t'  lines terminated '\\n';")  write.table(dataset3 , file3.txt, append=false, sep = "\t") sqlquery(channel," load data local infile 'file3.txt' table lta_r_db.file3  fields terminated '\t'  lines terminated '\\n';")  write.table(dataset4 , file4.txt, append=false, sep = "\t") sqlquery(channel," load data local infile 'file4.txt' table lta_r_db.file4  fields terminated '\t'  lines terminated '\\n';")  write.table(dataset5 , file5.txt, append=false, sep = "\t") sqlquery(channel," load data local infile 'file5.txt' table lta_r_db.file5  fields terminated '\t'  lines terminated '\\n';") 

how can run above improved processing.

here can find way fictious data .. following code tests repeated insertion of list of data.frame in mysql db rmysql::dbwritetable using base::mapply , parallel::mcmapply

consider that, in general, few accesses db (and more data per access), better is. alternative, may try pack data in larger tables in r , export'em mysql.

however, mysql side..

## mysql> show tables;                                                           ## +----------------+                                                            ## | tables_in_test |                                                            ## +----------------+                                                            ## | table1         |                                                            ## | table2         |                                                            ## | table3         |                                                            ## | table4         |                                                            ## | table5         |                                                            ## +----------------+                                                            ## 5 rows in set (0.00 sec)                                                       ## mysql> describe table1;                                                       ## +-------+---------+------+-----+---------+-------+                            ## | field | type    | null | key | default | |                            ## +-------+---------+------+-----+---------+-------+                            ## | id    | int(11) | yes  |     | null    |       |                            ## | value | float   | yes  |     | null    |       |                            ## +-------+---------+------+-----+---------+-------+                            ## 2 rows in set (0.00 sec)         

then

## ## ----------------------------------------------------------        ## ## few benchmark                                                   ## ## ----------------------------------------------------------        ## create data                                                     id <- 1:5 val <- rnorm(5) ## need have list of data.frame, eg                            my.df <- data.frame("id"= 1:5,                    "value"=rnorm(5)) df.list <- split(my.df, my.df$id) ## otherwise                                                            ## df.list <- list(df1,df2,df3,df4,df5)  tab.names <- paste("table", 1:5, sep="")                                  ## number of repetitions                                                reps <- 100  clean <- function() {     dbsendquery(my.con, "delete table1")     dbsendquery(my.con, "delete table2")     dbsendquery(my.con, "delete table3")     dbsendquery(my.con, "delete table4")     dbsendquery(my.con, "delete table5") }  ## ## -------------------------------------------------------    library(rmysql) library(parallel)  my.con <- dbconnect(mysql(),                  host = "localhost",                  dbname = "test",                  user = "your.username",                  password = "your.password")  clean()   system.time(     (i in 1:reps) {         mapply(dbwritetable,                name=tab.names ,                value = df.list,                moreargs=list(conn = my.con, append = t,                    row.names = false))     })  clean()  system.time(     (i in 1:reps) {         mcmapply(dbwritetable,                  name=tab.names ,                  value = df.list,                  moreargs=list(conn = my.con, append = t,                      row.names = false),                  mc.cores = 8,                  mc.preschedule = false                  )     })  clean()   dbdisconnect(my.con) rm(my.con) 

i didn't find increased spead using parallelization. in end, @ least in setting, use simple

mapply(dbwritetable,        name=paste("table", 1:5, sep="") ,        value = df.list,        moreargs=list(conn = my.con, append = t, row.names = false)) 

i don't use odbc lot in unix could't test against rodbc, hth.

cheers


Comments

Popular posts from this blog

php - Magento - Deleted Base url key -

javascript - Tooltipster plugin not firing jquery function when button or any click even occur -

java - WrongTypeOfReturnValue exception thrown when unit testing using mockito -